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Abstract

The topic of multi-person pose estimation has been

largely improved recently, especially with the development

of convolutional neural network. However, there still exist

a lot of challenging cases, such as occluded keypoints, in-

visible keypoints and complex background, which cannot be

well addressed. In this paper, we present a novel network

structure called Cascaded Pyramid Network (CPN) which

targets to relieve the problem from these “hard” keypoints.

More specifically, our algorithm includes two stages: Glob-

alNet and RefineNet. GlobalNet is a feature pyramid net-

work which can successfully localize the “simple” key-

points like eyes and hands but may fail to precisely rec-

ognize the occluded or invisible keypoints. Our RefineNet

tries explicitly handling the “hard” keypoints by integrat-

ing all levels of feature representations from the Global-

Net together with an online hard keypoint mining loss. In

general, to address the multi-person pose estimation prob-

lem, a top-down pipeline is adopted to first generate a set

of human bounding boxes based on a detector, followed by

our CPN for keypoint localization in each human bounding

box. Based on the proposed algorithm, we achieve state-of-

art results on the COCO keypoint benchmark, with average

precision at 73.0 on the COCO test-dev dataset and 72.1 on

the COCO test-challenge dataset, which is a 19% relative

improvement compared with 60.5 from the COCO 2016 key-

point challenge. Code1 and the detection results for person

used will be publicly available for further research.

1. Introduction

Multi-person pose estimation is to recognize and locate

the keypoints for all persons in the image, which is a fun-

damental research topic for many visual applications like

human action recognition and human-computer interaction.

Recently, the problem of multi-person pose estimation

∗The first two authors contribute equally to this work. This work is

done when Yilun Chen, Xiangyu Peng and Zhiqiang Zhang are interns at

Megvii Research.
1https://github.com/allenchen9512/tf-cpn

has been greatly improved by the involvement of deep con-

volutional neural networks [22, 16]. For example, in [5],

convolutional pose machine is utilized to locate the key-

point joints in the image and part affinity fields (PAFs) is

proposed to assemble the joints to different person. Mask-

RCNN [15] predicts human bounding boxes first and then

warps the feature maps based on the human bounding boxes

to obtain human keypoints. Although great progress has

been made, there still exist a lot of challenging cases, such

as occluded keypoints, invisible keypoints and crowded

background, which cannot be well localized. The main rea-

sons lie at two points: 1) these “hard” joints cannot be sim-

ply recognized based on their appearance features only, for

example, the torso point; 2) these “hard” joints are not ex-

plicitly addressed during the training process.

To address these “hard” joints, in this paper, we present

a novel network structure called Cascaded Pyramid Net-

work (CPN). There are two stages in our network archi-

tecture: GlobalNet and RefineNet. Our GlobalNet learns

a good feature representation based on feature pyramid net-

work [24]. More importantly, the pyramid feature repre-

sentation can provide sufficient context information, which

is inevitable for the inference of the occluded and invisible

joints. Based on the pyramid features, our RefineNet ex-

plicitly address the “hard” joints based on an online hard

keypoints mining loss.

Based on our Cascaded Pyramid Network, we address

the multi-person pose estimation problem based on a top-

down pipeline. Human detector is first adopted to generate

a set of human bounding boxes, followed by our CPN for

keypoint localization in each human bounding box. In ad-

dition, we also explore the effects of various factors which

would contribute to the performance of multi-person pose

estimation, including person detector and data preprocess-

ing. These details are valuable for the further improvement

of accuracy and robustness of our algorithm.

In summary, our contributions are three-fold as follows:

• We propose a novel and effective network called

cascaded pyramid network (CPN), which integrates

global pyramid network (GlobalNet) and pyramid re-

fined network based on online hard keypoints min-
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ing (RefineNet)

• We explore the effects of various factors contributing

to muti-person pose estimation involved in top-down

pipeline.

• Our algorithm achieves state-of-art results in the chal-

lenging COCO multi-person keypoint benchmark, that

is, 73.0 AP in test-dev dataset and 72.1 AP in test chal-

lenge dataset.

2. Related Work

Human pose estimation is an active research topic since

for decades. Classical approaches tackling the problem

of human pose estimation mainly adopt the techniques of

pictorial structures [10, 1] or graphical models [7]. More

specifically, the classical works [1, 34, 13, 33, 8, 44, 29, 20]

formulate the problem of human keypoints estimation as

a tree-structured or graphical model problem and predict

keypoint locations based on hand-crafted features. Recent

works [27, 14, 4, 19, 39, 42] mostly rely on the devel-

opment of convolutional neural network(CNN) [22, 16],

which largely improve the performance of pose estimation.

In this paper, we mainly focus on the methods based on

the convolutional neural network. The topic is categorized

as single-person pose estimation, which predicts the human

keypoints based on the cropped bounding box, and multi-

person pose estimation, which needs recognize the full body

poses of all persons in images.

Multi-Person Pose Estimation. Multi-person pose es-

timation is gaining increasing popularity recently because

of the high demand for the real-life applications. How-

ever, multi-person pose estimation is challenging owing to

occlusion, various gestures of individual persons and un-

predictable interactions between different persons. The ap-

proach of multi-person pose estimation is mainly divided

into two categories: bottom-up approaches and top-down

approaches.

Bottom-Up Approaches. Bottom-up approaches [5, 26,

30, 19] directly predict all keypoints at first and assemble

them into full poses of all persons. DeepCut [30] interprets

the problem of distinguishing different persons in an image

as an Integer Linear Program (ILP) problem and partition

part detection candidates into person clusters. Then the fi-

nal pose estimation results are obtained when person clus-

ters are combined with labeled body parts. DeeperCut [19]

improves DeepCut [30] using deeper ResNet [16] and em-

ploys image-conditioned pairwise terms to get better perfor-

mance. Zhe Cao et al. [5] map the relationship between key-

points into part affinity fields (PAFs) and assemble detected

keypoints into different poses of people. Newell et al. [26]

simultaneously produce score maps and pixel-wise embed-

ding to group the candidate keypoints to different people to

get final multi-person pose estimation.

Top-Down Approaches. Top-down approaches [28, 18,

15, 9] interpret the process of detecting keypoints as a two-

stage pipeline, that is, firstly locate and crop all persons

from image, and then solve the single person pose estima-

tion problem in the cropped person patches. Papandreou et

al. [28] predict both heatmaps and offsets of the points on

the heatmaps to the ground truth location, and then uses the

heatmaps with offsets to obtain the final predicted location

of keypoints. Mask-RCNN [15] predicts human bounding

boxes first and then crops out the feature map of the corre-

sponding human bounding box to predict human keypoints.

If top-down approach is utilized for multi-person pose

estimation, a human detector as well as single person pose

estimator is important in order to obtain a good perfor-

mance. Here we review some works about single person

pose estimation and recent state-of-art detection methods.

Single Person Pose Estimation. Toshev et al. firstly in-

troduce CNN to solve pose estimation problem in the work

of DeepPose [38], which proposes a cascade of CNN pose

regressors to deal with pose estimation. Tompson et al. [37]

attempt to solve the problem by predicting heatmaps of key-

points using CNN and graphical models. Later works such

as Wei et al. [40]and Newell et al. [27] show great perfor-

mance via generating the score map of keypoints using very

deep convolutional neural networks. Wei et al. [40] propose

a multi-stage architecture, i.e., first generate coarse results,

and continuously refine the result in the following stages.

Newell et al. [27] propose an U-shape network, i.e., hour-

glass module, and stack up several hourglass modules to

generate prediction. Carreira et al. [6] uses iterative error

feedback to get pose estimation and refine the prediction

gradually. Lifshitz et al. [23] uses deep consensus voting to

vote the most probable location of keypoints. Gkioxary et

al. [14] and Zisserman et al. [2] apply RNN-like architec-

tures to sequentially refine the results. Our work is partly in-

spired by the works on generating and refining score maps.

Yang et al. [43] adopts pyramid features as inputs of the

network in the process of pose estimation, which is good

exploration of the utilization of pyramid features in pose

estimation. However, more should be done with pyramid

structure in pose estimation.

Human Detection. Detection approaches are mainly

guided by the RCNN family [12, 11, 31], the up-to-date de-

tector of which are [24, 15]. These detection approaches

are composed of two-stage in general. First generate boxes

proposals based on default anchors, and then crop from the

feature map and further refine the proposals to get the final

boxes via R-CNN network. The detector used in our meth-

ods are mostly based on [24, 15].
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Figure 1. Cascaded Pyramid Network. “L2 loss*” means L2 loss with online hard keypoints mining.

3. Our Approach for Multi-perosn Keypoints

Estimation

Similar to [15, 28], our algorithm adopts the top-down

pipeline: a human detector is first applied on the image to

generate a set of human bounding-boxes and detailed local-

ization of the keypoints for each person can be predicted by

a single-person skeleton estimator.

3.1. Human Detector

We adopt the state-of-art object detector algorithms

based on FPN [24]. ROIAlign from Mask RCNN [15] is

adopted to replace the ROIPooling in FPN. To train the ob-

ject detector, all eighty categories from the COCO dataset

are utilized during the training process but only the boxes of

human category is used for our multi-person skeleton task.

For fair comparison with our algorithms, we will release the

detector results on the COCO val and COCO test dataset.

3.2. Cascaded Pyramid Network (CPN)

Before starting the discussion of our CPN, we first

briefly review the design structure for the single person

skeleton estimator based on each human bounding box.

Stacked hourglass [27], which is a prevalent method for

pose estimation, stacks eight hourglasses which are down-

sampled and up-sampled modules to enhance the pose esti-

mation performance. The stacking strategy works to some

extent, however, we find that stacking two hourglasses is

sufficient to have a comparable performance compared with

the eight-stage stacked hourglass module. [28] utilizes a

ResNet [16] network to estimate pose in the wild achieving

promising performance in the COCO 2016 keypoint chal-

lenge. Motivated by the works [27, 28] described above,

we propose an effective and efficient network called cas-

caded pyramid network (CPN) to address the problem of

pose estimation. As shown in Figure 1, our CPN involves

two subnetworks: GlobalNet and RefineNet.

3.2.1 GlobalNet

Here, we describe our network structure based on the

ResNet backbone. We denote the last residual blocks of

different conv features conv2∼5 as C2, C3, ..., C5 respec-

tively. 3 × 3 convolution filters are applied on C2, ..., C5

to generate the heatmaps for keypoints. As shown in Fig-

ure 2, the shallow features like C2 and C3 have the high

spatial resolution for localization but low semantic informa-

tion for recognition. On the other hand, deep feature layers

like C4 and C5 have more semantic information but low

spatial resolution due to strided convolution (and pooling).

Thus, usually a U-shape structure is integrated to maintain

both the spatial resolution and semantic information for the

feature layers. More recently, FPN [24] further improves

the U-shape structure with deeply supervised information.

We apply the similar feature pyramid structure for our key-

points estimation. Slightly different from FPN, we apply

1 × 1 convolutional kernel before each element-wise sum

procedure in the upsampling process. We call this structure

as GlobalNet and an illustrative example can be found in

Figure 1.

As shown in Figure 2, our GlobalNet based on ResNet

backbone can effectively locate the keypoints like eyes but

may fail to precisely locate the position of hips. The local-

ization of keypoints like hip usually requires more context

rather than the appearance feature nearby. Thus, it is usually

difficult to directly recognize these “hard” keypoints based

on GlobalNet.

3.2.2 RefineNet

Based on the feature pyramid representation generated by

GlobalNet, we attach a RefineNet to explicitly address the

“hard” keypoints. In order to improve the efficiency and

keep integrity of information transmission, our RefineNet

transmits the information across different levels and finally

integrates the informations of different levels via upsam-
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Figure 2. Output heatmaps from different features. The green dots means the groundtruth location of keypoints.

pling and concatenating as HyperNet [21]. Different from

the refinement strategy like stacked hourglass [27], our Re-

fineNet concatenates all the pyramid features rather than

simply using the upsampled features at the end of hourglass

module. In addition, we stack more bottleneck blocks into

deeper layers, whose smaller spatial size achieves a good

trade-off between effectiveness and efficiency.

As the network continues training, the network tends to

pay more attention to the “simple” keypoints of the major-

ity but less importance to the occluded and hard keypoints.

Thus, in our RefineNet, we explictily select the hard key-

points online based on the training loss and backpropagate

the losses from the selected keypoints only.

4. Experiment

Our overall pipeline follows the top-down approach for

estimating multiple human poses. Firstly, we apply a state-

of-art bounding detector to generate human proposals. For

each proposal, we assume that there is only one main person

in the cropped region of proposal and then applied the pose

estimating network to generate the final prediction. In this

section, we will discuss more details of our methods based

on experiment results.

4.1. Experimental Setup

Dataset and Evaluation Metric. Our models are only

trained on MS COCO[25] trainval dataset (includes 57K

images and 150K person instances) and validated on MS

COCO minival dataset (includes 5000 images). The testing

sets includes test-dev set (20K images) and test-challenge

set (20K images). Most experiments are evaluated in OKS-

based mAP, where OKS (object keypoints similarity) de-

fines the similarity between different human poses.

Cropping Strategy. For each human detection box, the

box is extended to a fixed aspect ratio, e.g., height : width

= 256 : 192, and then we crop from images without distort-

ing the images aspect ratio. Finally, we resize the cropped

image to a fixed size of height 256 pixels and 192 pixels by

default. Note that only the boxes of the person class in the

top 100 boxes of all classes are used in all the experiments

of 4.2.

Data Augmentation Strategy. Data augmentation is

critical for the learning of scale invariance and rotation in-

variance. After cropping from images, we apply random

flip, random rotation (−40◦ ∼ +40◦) and random scale

(0.7 ∼ 1.3).

Training Details. All models of pose estimation are

trained using SGD algorithm with an initial learning rate of

5e-4. The learning rate is decreased by a factor of 2 every

10 epochs. We use a weight decay of 1e-5 and batch nor-

malization is used in our network. Generally, the training

of ResNet-50-based models takes about 1.5 day on eight

NVIDIA Titan X Pascal GPUs. Our models are all ini-

tialized with weights of the public-released ImageNet [32]-

pretrained model.

Testing Details. In order to minimize the variance of

prediction, we apply a 2D gaussian filter on the predicted

heatmaps. Following the same techniques used in [27], we

also predict the pose of the corresponding flipped image and

average the heatmaps to get the final prediction; a quarter

offset in the direction from the highest response to the sec-

ond highest response is used to obtain the final location of

the keypoints. Rescoring strategy is also used in our exper-

iments. Different from the rescoring strategy used in [28],

the product of boxes’ score and the average score of all key-

points is considered as the final pose score of a person in-

stance.

4.2. Ablation Experiment

In this subsection, we validate the effectiveness of our

network from various aspects. Unless otherwise specified,

all experiments are evaluated on MS COCO minival dataset

in this subsection. The input size of all models is 256× 192
and the same data augmentation is adopted.

4.2.1 Person Detector

Since detection boxes are critical for top-down approaches

in multi-person pose estimation, here we discuss two fac-

tors of detection, i.e. different NMS strategies and the AP

of bounding boxes. Our human boxes are generated based

on the state-of-art detector FPN trained with only the la-

beled COCO data, no extra data and no specific training on
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person. For fair comparison, we use the same detector with

a general AP of 41.1 and person AP of 55.3 on the COCO

minival dataset in the ablation experiments by default unless

otherwise specified.

Non-Maximum Suppression (NMS) strategies. As

shown in the Table 1, we compare the performance of differ-

ent NMS strategies or the same NMS strategy under differ-

ent thresholds. Referring to the original hard NMS, the per-

formance of keypoints detection improves when the thresh-

old increases, basically owing to the improvement of the av-

erage precision (AP) and average recall (AR) of the boxes.

Since the final score of the pose estimated partially depends

on the score of the bounding box, Soft-NMS [3] which is

supposed to generate more proper scores is better in perfor-

mance as it is shown in the Table 1 . From the table, we can

see that Soft-NMS [3] surpasses the hard NMS method on

the performance of both detection and keypoints detection.

NMS AP(all) AP(H) AR(H) AP(OKS)

NMS(thr=0.3) 40.1 53.5 60.3 68.2

NMS(thr=0.4) 40.5 54.4 61.7 68.9

NMS(thr=0.5) 40.8 54.9 62.9 69.2

NMS(thr=0.6) 40.8 55.2 64.3 69.2

Soft-NMS [3] 41.1 55.3 67.0 69.4

Table 1. Comparison between different NMS methods and key-

points detection performance with the same model. H is short for

human.

Detection Performance. Table 2 shows the relationship

between detection AP and the corresponding keypoints AP,

aiming to reveal the influence of the accuracy of the bound-

ing box detection on the keyoints detection. From the table,

we can see that the keypoints detection AP gains less and

less as the accuracy of the detection boxes increases. Spe-

cially, when the detection AP increases from 44.3 to 49.3

and the human detection AP increases 3.0 points, the key-

points detection accuracy does not improve a bit and the

AR of the detection increases marginally. Therefore, we

have enough reasons to deem that the given boxes cover

most of the medium and large person instances with such

a high detection AP. Therefore, the more important prob-

lem for pose estimation is to enhance the accuracy of hard

keypoints other than involve more boxes.

4.2.2 Cascaded Pyramid Network

8-stage hourglass network [27] and ResNet-50 with di-

lation [28] are adopted as our baseline. From Table 3,

although the results improve considerably if dilation are

used in shallow layers, it is worth noting that the FLOPs

(floating-point operations) increases significantly.

From the statistics of FLOPs in testing stage and the ac-

curacy of keypoints as shown in Table 3, we find that CPN

Det Methods AP(all) AP(H) AR(H) AP(OKS)

FPN-1 36.3 49.6 58.5 68.8

FPN-2 41.1 55.3 67.0 69.4

FPN-3 44.3 58.4 71.3 69.7

ensemble-1 49.3 61.4 71.8 69.8

ensemble-2 52.1 62.9 74.7 69.8

Table 2. Comparison between detection performance and key-

points detection performance. FPN-1: FPN with the backbone

of res50; FPN-2: res101 with Soft-NMS and OHEM [35] applied;

FPN-3: resNeXt [41]101 with Soft-NMS, OHEM [35], multiscale

training applied; ensemble-1: multiscale test involved; ensemble-

2: multiscale test, large batch and SENet [17] involved. H is short

for Human.

Models AP (OKS) FLOPs Param Size

1-stage hourglass 54.5 3.92G 12MB

2-stage hourglass 66.5 6.14G 23MB

8-stage hourglass 66.9 19.48G 89MB

ResNet-50 41.3 3.54G 92MB

ResNet-50

+ dilation(res5)
44.1 5.62G 92MB

ResNet-50

+ dilation(res4-5)
66.5 17.71G 92MB

ResNet-50

+ dilation(res3-5)
– 68.70G 92MB

GlobalNet only

(ResNet-50)
66.6 3.90G 94MB

CPN* (ResNet-50) 68.6 6.20G 102 MB

CPN (ResNet-50) 69.4 6.20G 102 MB

Table 3. Results on COCO minival dataset. CPN* indicates CPN

without online hard keypoints mining.

achieves much better speed-accuracy trade-off than Hour-

glass network and ResNet-50 with dilation. Note that Glob-

alNet achieves much better results than one-stage hourglass

network of same FLOPs probably for much larger param-

eter space. After refined by the RefineNet, it increases 2.0

AP and yields the results of 68.6 AP. Furthermore, when

online hard keypoints mining is applied in RefineNet, our

network finally achieves 69.4 AP.

Design Choices of RefineNet. Here, we compare differ-

ent design strategies of RefineNet as shown in Table 4. We

compare the following implementation based on pyramid

output from the GlobalNet:

1) Concatenate (Concat) operation is directly attached

like HyperNet [21],

2) a bottleneck block is attached first in each layer (C2 ∼
C5) and then followed by a concatenate operation,

3) different number of bottleneck blocks applied to dif-

ferent layers followed by a concatenate operation as

shown in Figure 1.
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A convolution layer is attached finally to generate the score

maps for each keypoint.

We find that our RefineNet structure can effectively

achieve more than 2 points gain compared with GlobalNet

only and for refinement of keypoints and also outperforms

other design implementations followed by GlobalNet.

Models AP(OKS) FLOPs

GlobalNet only 66.6 3.90G

GlobalNet + Concat 68.5 5.87G

GlobalNet + one bottleneck +Concat 69.2 6.92G

ours (CPN) 69.4 6.20G

Table 4. Comparison of models of different design choices of Re-

fineNet.

Here, we also validate the performance for utilizing the

pyramid output from different levels. In our RefineNet, we

utilize four output feature maps C2 ∼ C5, where Ci refers

to the ith feature map of GlobalNet output. Also, feature

map from C2 only, feature maps from C2 ∼ C3, and feature

maps from C2 ∼ C4 are evaluated as shown in Table 5. We

can find that the performance improves as more levels of

features are utilized.

Connections AP(OKS) FLOPs

C2 68.3 5.02G

C2 ∼ C3 68.4 5.50G

C2 ∼ C4 69.1 5.88G

C2 ∼ C5 69.4 6.20G

Table 5. Effectiveness of intermediate connections of CPN.

4.2.3 Online Hard Keypoints Mining

Here we discuss the losses used in our network. In detail,

the loss function of GlobalNet is L2 loss of all annotated

keypoints while the second stage tries learning the hard key-

points, that is, we only punish the top M(M < N) keypoint

losses out of N (the number of annotated keypoints in one

person, say 17 in COCO dataset). The effect of M is shown

in Table 6. For M = 8, the performance of second stage

achieves the best result for the balanced training between

hard keypoints and simple keypoints.

M 6 8 10 12 14 17

AP (OKS) 68.8 69.4 69.0 69.0 69.0 68.6

Table 6. Comparison of different hard keypoints number in online

hard keypoints mining.

Inspired by OHEM [35], however the method of online

hard keypoints mining loss is quite different from it. our

method focuses on higher level information than OHEM

which concentrates on examples, for instance, pixel level

losses in the heatmap L2 loss. As a result, our method is

more stable, and outperforms OHEM strategy in accuracy.

As Table 7 shows, when online hard keypoints mining

is applied in RefineNet, the performance of overall network

increases 0.8 AP and finally achieves 69.4 AP comparing to

normal l2 loss. For reference, experiments without interme-

diate supervision in CPN leads to a performance drop of 0.9

AP probably for the lack of prior knowledge and sufficient

context information of keypoints provided by GlobalNet. In

addition, applying the same online hard keypoints mining in

GlobalNet which decreases the results by 0.3 AP.

GlobalNet RefineNet AP(OKS)

- L2 loss 68.2

L2 loss L2 loss 68.6

- L2 loss* 68.5

L2 loss L2 loss* 69.4

L2 loss* L2 loss* 69.1

Table 7. Comparison of models with different losses function.

Here “-” denotes that the model applies no loss function in cor-

responding subnetwork. “L2 loss*” means L2 loss with online

hard keypoints mining.

4.2.4 Data Pre-processing

The size of cropped image are important factors to the per-

formance of keypoints detection. As Table 8 illustrates, it’s

worth noting that the input size 256×192 actually works as

well as 256×256 which costs more computations of almost

2G FLOPs using the same cropping strategy. As the input

size of the cropped images increases, more location details

of human keypoints are fed into the network resulting in a

large performance improvement. Additionally, online hard

keypoints mining works better when the input size of the

crop images is enlarged by improving 1 point on 384× 288
input size.

Models Input Size FLOPs AP(OKS)

8-stage Hourglass 256× 192 19.5G 66.9

8-stage Hourglass 256× 256 25.9G 67.1

CPN* (ResNet-50) 256× 192 6.2G 68.6

CPN (ResNet-50) 256× 192 6.2G 69.4

CPN* (ResNet-50) 384× 288 13.9G 70.6

CPN (ResNet-50) 384× 288 13.9G 71.6

Table 8. Comparison of models of different input size. CPN* in-

dicates CPN without online hard keypoints mining.

4.3. Results on MS COCO Keypoints Challenge

We evaluate our method on MS COCO test-dev and test-

challenge dataset. Table 10 illustrates the results of our

method in the test-dev split dataset of the COCO dataset.
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Methods AP AP@.5 AP@.75 APm APl AR AR@.5 AR@.75 ARm ARl

FAIR Mask R-CNN* 68.9 89.2 75.2 63.7 76.8 75.4 93.2 81.2 70.2 82.6

G-RMI* 69.1 85.9 75.2 66.0 74.5 75.1 90.7 80.7 69.7 82.4

bangbangren+* 70.6 88.0 76.5 65.6 79.2 77.4 93.6 83.0 71.8 85.0

oks* 71.4 89.4 78.1 65.9 79.1 77.2 93.6 83.4 71.8 84.5

Ours+ (CPN+) 72.1 90.5 78.9 67.9 78.1 78.7 94.7 84.8 74.3 84.7

Table 9. Comparisons of final results on COCO test-challenge2017 dataset. “*” means that the method involves extra data for training.

Specifically, FAIR Mask R-CNN involves distilling unlabeled data, oks uses AI-Challenger keypoints dataset, bangbangren and G-RMI

use their internal data as extra data to enhance performance. “+” indicates results using ensembled models. The human detector of Ours+

is a detector that has an AP of 62.9 of human class on COCO minival dataset. CPN and CPN+ in this table all use the backbone of

ResNet-Inception [36] framework.

Methods AP AP@.5 AP@.75 APm APl AR AR@.5 AR@.75 ARm ARl

CMU-Pose [5] 61.8 84.9 67.5 57.1 68.2 66.5 87.2 71.8 60.6 74.6

Mask-RCNN [15] 63.1 87.3 68.7 57.8 71.4 - - - - -

Associative Embedding [26] 65.5 86.8 72.3 60.6 72.6 70.2 89.5 76.0 64.6 78.1

G-RMI [28] 64.9 85.5 71.3 62.3 70.0 69.7 88.7 75.5 64.4 77.1

G-RMI* [28] 68.5 87.1 75.5 65.8 73.3 73.3 90.1 79.5 68.1 80.4

Ours (CPN) 72.1 91.4 80.0 68.7 77.2 78.5 95.1 85.3 74.2 84.3

Ours+ (CPN+) 73.0 91.7 80.9 69.5 78.1 79.0 95.1 85.9 74.8 84.7

Table 10. Comparisons of final results on COCO test-dev dataset. “*” means that the method involves extra data for training. “+” indicates

results using ensembled models. The human detectors of Our and Ours+ the same detector that has an AP of 62.9 of human class on COCO

minival dataset.CPN and CPN+ in this table all use the backbone of ResNet-Inception [36] framework.

Methods AP - minival AP - dev AP - challenge

Ours (CPN) 72.7 72.1 -

Ours (CPN+) 74.5 73.0 72.1

Table 11. Comparison of results on the minvival dataset and the

corresponding results on test-dev or test-challenge of the COCO

dataset. “+” indicates ensembled model. CPN and CPN+ in this

table all use the backbone of ResNet-Inception [36] framework.

Without extra data involved in training, we achieve 72.1

AP using a single model of CPN and 73.0 using ensembled

models of CPN with different ground truth heatmaps. Ta-

ble 9 shows the comparison of the results of our method and

the other methods on the test-challenge2017 split of COCO

dataset. We get 72.1 AP achieving state-of-art performance

on COCO test-challenge2017 dataset. Table 11 shows the

performances of CPN and CPN+ (ensembled model) on

COCO minival dataset, which offer a reference to the gap

between the COCO minival dataset and the standard test-

dev or test-challenge dataset of the COCO dataset. Figure 3

illustrates some results generated using our method.

5. Conclusion

In this paper, we follow the top-down pipeline and a

novel Cascaded Pyramid Network (CPN) is presented to

address the “hard” keypoints. More specifically, our CPN

includes a GlobalNet based on the feature pyramid struc-

ture and a RefineNet which concatenates all the pyramid

features as a context information. In addition, online hard

keypoint mining is integrated in RefineNet to explicitly ad-

dress the “hard” keypoints. Our algorithm achieves state-

of-art results on the COCO keypoint benchmark, with av-

erage precision at 73.0 on the COCO test-dev dataset and

72.1 on the COCO test-challenge dataset, outperforms the

COCO 2016 keypoint challenge winner by a 19% relative

improvement.

References

[1] M. Andriluka, S. Roth, and B. Schiele. Pictorial structures

revisited: People detection and articulated pose estimation.

In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 1014–1021, 2009. 2

[2] V. Belagiannis and A. Zisserman. Recurrent human pose

estimation. pages 468–475, 2016. 2

[3] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis. Improv-

ing Object Detection With One Line of Code. ArXiv e-prints,

Apr. 2017. 5

[4] A. Bulat and G. Tzimiropoulos. Human Pose Estimation via

Convolutional Part Heatmap Regression. Springer Interna-

tional Publishing, 2016. 2

[5] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-

person 2d pose estimation using part affinity fields. In CVPR,

2017. 1, 2, 7

[6] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Ma-

lik. Human pose estimation with iterative error feedback.

2013(2013):4733–4742, 2015. 2

7109



Figure 3. Some results of our method.

7110



[7] X. Chen and A. Yuille. Articulated pose estimation by a

graphical model with image dependent pairwise relations.

Eprint Arxiv, pages 1736–1744, 2014. 2

[8] M. Dantone, J. Gall, C. Leistner, and L. Van Gool. Human

pose estimation using body parts dependent joint regressors.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2013. 2

[9] H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu. Rmpe: Regional

multi-person pose estimation. In The IEEE International

Conference on Computer Vision (ICCV), Oct 2017. 2

[10] M. A. Fischler and R. A. Elschlager. The representation and

matching of pictorial structures. IEEE Transactions on Com-

puters, C-22(1):67–92, 2006. 2

[11] R. Girshick. Fast R-CNN. In Proceedings of the Interna-

tional Conference on Computer Vision (ICCV), 2015. 2

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2014. 2

[13] G. Gkioxari, P. Arbelaez, L. Bourdev, and J. Malik. Articu-

lated pose estimation using discriminative armlet classifiers.

In IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 3342–3349, 2013. 2

[14] G. Gkioxari, A. Toshev, and N. Jaitly. Chained predictions

using convolutional neural networks. In European Confer-

ence on Computer Vision, pages 728–743, 2016. 2

[15] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-

CNN. arXiv preprint arXiv:1703.06870, 2017. 1, 2, 3, 7

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2016. 1, 2, 3

[17] J. Hu, L. Shen, and G. Sun. Squeeze-and-Excitation Net-

works. 5

[18] S. Huang, M. Gong, and D. Tao. A coarse-fine network for

keypoint localization. In The IEEE International Conference

on Computer Vision (ICCV), Oct 2017. 2

[19] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and

B. Schiele. Deepercut: A deeper, stronger, and faster multi-

person pose estimation model. In European Conference on

Computer Vision, pages 34–50, 2016. 2

[20] S. Johnson and M. Everingham. Learning effective human

pose estimation from inaccurate annotation. In Computer

Vision and Pattern Recognition, pages 1465–1472, 2011. 2

[21] T. Kong, A. Yao, Y. Chen, and F. Sun. Hypernet: Towards

accurate region proposal generation and joint object detec-

tion. In Computer Vision and Pattern Recognition, pages

845–853, 2016. 4, 5

[22] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998. 1, 2

[23] I. Lifshitz, E. Fetaya, and S. Ullman. Human pose estimation

using deep consensus voting. In European Conference on

Computer Vision, pages 246–260, 2016. 2

[24] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and

S. Belongie. Feature pyramid networks for object detection.

In CVPR, 2017. 1, 2, 3

[25] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollr, and C. L. Zitnick. Microsoft coco: Common

objects in context. 8693:740–755, 2014. 4

[26] A. Newell, Z. Huang, and J. Deng. Associative Embed-

ding: End-to-End Learning for Joint Detection and Group-

ing. ArXiv e-prints, Nov. 2016. 2, 7

[27] A. Newell, K. Yang, and J. Deng. Stacked hourglass net-

works for human pose estimation. In European Conference

on Computer Vision, pages 483–499, 2016. 2, 3, 4, 5

[28] G. Papandreou, T. Zhu, N. Kanazawa, A. Toshev, J. Tomp-

son, C. Bregler, and K. Murphy. Towards Accurate Multi-

person Pose Estimation in the Wild. ArXiv e-prints, Jan.

2017. 2, 3, 4, 5, 7

[29] L. Pishchulin, M. Andriluka, P. Gehler, and B. Schiele. Pose-

let conditioned pictorial structures. In Computer Vision and

Pattern Recognition, pages 588–595, 2013. 2

[30] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. An-

driluka, P. Gehler, and B. Schiele. Deepcut: Joint sub-

set partition and labeling for multi person pose estimation.

In Computer Vision and Pattern Recognition, pages 4929–

4937, 2016. 2

[31] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In Neural Information Processing Systems (NIPS),

2015. 2

[32] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer

Vision (IJCV), 115(3):211–252, 2015. 4

[33] B. Sapp, C. Jordan, and B. Taskar. Adaptive pose priors for

pictorial structures. In Computer Vision and Pattern Recog-

nition, pages 422–429, 2010. 2

[34] B. Sapp and B. Taskar. Modec: Multimodal decomposable

models for human pose estimation. In Computer Vision and

Pattern Recognition, pages 3674–3681, 2013. 2

[35] A. Shrivastava, A. Gupta, and R. Girshick. Training region-

based object detectors with online hard example mining. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 761–769, 2016. 5, 6

[36] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. Inception-

v4, Inception-ResNet and the Impact of Residual Connec-

tions on Learning. ArXiv e-prints, Feb. 2016. 7

[37] J. Tompson, A. Jain, Y. Lecun, and C. Bregler. Joint training

of a convolutional network and a graphical model for human

pose estimation. Eprint Arxiv, pages 1799–1807, 2014. 2

[38] A. Toshev and C. Szegedy. Deeppose: Human pose estima-

tion via deep neural networks. pages 1653–1660, 2013. 2

[39] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Con-

volutional pose machines. In CVPR, 2016. 2

[40] S. E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Con-

volutional pose machines. pages 4724–4732, 2016. 2

[41] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He. Aggregated

residual transformations for deep neural networks. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), July 2017. 5

7111



[42] W. Yang, S. Li, W. Ouyang, H. Li, and X. Wang. Learning

feature pyramids for human pose estimation. In The IEEE

International Conference on Computer Vision (ICCV), Oct

2017. 2

[43] W. Yang, S. Li, W. Ouyang, H. Li, and X. Wang. Learning

feature pyramids for human pose estimation. In The IEEE

International Conference on Computer Vision (ICCV), Oct

2017. 2

[44] Y. Yang and D. Ramanan. Articulated pose estimation with

flexible mixtures-of-parts. In Computer Vision and Pattern

Recognition, pages 1385–1392, 2011. 2

7112


